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S Y N O P S I S







T h i s  N u m e r i c a l  M e t h o d  w o r k b o o k  p r o v i d e s  s t u d e n t s  w i t h

g u i d e l i n e s  a n d  q u e s t i o n s  o n  s o l v i n g  l i n e a r  a n d  n o n - l i n e a r

e q u a t i o n s .




T h e  m e t h o d s  u s e d  i n  t h i s  w o r k b o o k  t o  s o l v e  l i n e a r

e q u a t i o n s  a r e  t h e  G a u s s  E l i m i n a t i o n  m e t h o d  a n d  L U

D e c o m p o s i t i o n  m e t h o d  ( D o o l i t t l e  a n d  C r o u t )  w h i l e  S i m p l e

F i x e d  I t e r a t i o n  a n d  N e w t o n  R a p h s o n  m e t h o d s  a r e  u s e d

f o r  s o l v i n g  t h e  n o n - l i n e a r  e q u a t i o n s .




A  s h o r t  a n d  b r i e f  n o t e  a s  g u i d e l i n e s  i s  i n c l u d e d  i n  t h i s

w o r k b o o k .  W i t h  t h e s e  s t e p - b y - s t e p  g u i d e s ,  i t  w o u l d  b e  a

g r e a t  h e l p  f o r  t h e  s t u d e n t s  t o  e n h a n c e  t h e i r  k n o w l e d g e .




T o  m a s t e r  t h e  m a t h e m a t i c a l  c o n c e p t  o f  n u m e r i c a l

m e t h o d s ,  s t u d e n t s  c a n  p r a c t i c e  w i t h  t h e  1 0 0  q u e s t i o n s  i n

t h i s  w o r k b o o k .  



[1]
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E l iminat ion
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[5]
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Raphson
Method

[4]
F ixed Po int
Iterat ion
Method

[3] LU
Decompos it ion

Method :
Crout

[2] LU
Decompos it ion

Method :
Doo l itt le

NUMERICALNUMERICAL
METHODMETHOD

In this  course,  there are two numerical  methods of  solving the systems
of  equations are used:

 
 
 

Direct  methods are more concise without the error of  approximation
obtained in a  f inite  number of  steps.  However,  i terative methods start
with an approximate solution and then generate a  sequence of
solutions that  modify the previous one to  get  an approximate answer.




     The use of  numerical  methods a l lows for  a  better  knowledge of
phenomena and the exact  prediction of  anomalies  that  is  not  achievable
using analytical  approaches,  which can only accurately answer
problems involving two or  three unknown variables .  Numerical
procedures are used when analytical  techniques are unable  or
impractical  to  handle  the mathematical  issues involved in engineering
analysis .  Numerical  methods are techniques for  approximating
mathematical  procedures.  Approximations are required because we
cannot solve the procedure analytical ly or  because the analytical
method is  intractable .

ITERATIVE METHOD
 

[4]  Fixed Point  Iteration,
[5]  Newton Raphson.

DIRECT METHOD



[ 1 ]  Gaussian Elimination,  
[2]  LU Decomposition:  Doolitt le ,  

[3]  LU Decomposition:  Crout .

D B M 3 0 0 3 3      |      N U M E R I C A L  M E T H O D
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GAUSSIAN ELIMINATION METHOD

The Gaussian Elimination method (a lso known as  the Row Reduction
Algorithm) ,  is  used to  solve Linear Equations Systems problems.

It  comprises  a  set  of  operations performed on the related coeff icient  matrix.

To perform row reduction on a  matrix ,  a  set  of  e lementary row operations
must  be carried out  to  transform the matrix into an Upper Triangular
Matrix.

Sets  of  Elementary Row Operations (ERO):

Interchange between two rows

Multiply a row by a nonzero scalar

Adding a row to another row

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S

3



GAUSSIAN ELIMINATION METHOD -  STEP BY STEP

STEP 2 | 
Perform ERO on this

matrix. (Allow any
operation from sets of

ERO, 1 or 2 or 3)



Goal: To convert the
original matrix into an

Upper Triangular
Matrix

STEP 3 | 
Convert the Upper
Triangular Matrix

formed into system of
linear equation

STEP 4 | 
Solve the equation

above using backward
substitution

Therefore,

Consider the system of
equations

STEP 1 | 
Form an Augmented

Matrix, (A | b)

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S

EXAMPLE 1 :  We can better  understand this  with the help of  the example
and Step-by-Step solution provided below.

4



GAUSSIAN ELIMINATION METHOD -  GUIDED EXERCISE

STEP 2 | 
Perform ERO on this

matrix. (Allow any
operation from sets of

ERO, 1 or 2 or 3)



Goal: To convert the
original matrix into an

Upper Triangular
Matrix

STEP 3 | 
Convert the Upper
Triangular Matrix

formed into system of
linear equation

STEP 4 | 
Solve the equation

above using backward
substitution

Therefore,

Consider the system of
equations

STEP 1 | 
Form an Augmented

Matrix, (A | b)

EXAMPLE 2:  By using the Gaussian Elimination Method,  f i l l  in  each blank
box below with the correct  answer.

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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6

1- Write the given system of the linear
equations below in the form of a matrix
equation, Ax=b:

2- Write the given system of the linear
equations below in the form of an
augmented matrix [A|b]:

3- Consider the upper triangular matrix A is
given by;

Find the value of           and       when the
value of b' is (5, -7, -15).

GAUSSIAN ELIMINATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S



GAUSSIAN ELIMINATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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3- Consider the given matrix A is given by;

Find the value of           and       when the
value of b' is (5, -7, -15).

4- Consider the given matrix A is given by;

Find the upper triangular matrix A by
performing elementary row operations.



GAUSSIAN ELIMINATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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GAUSSIAN ELIMINATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Consider [A] is a square matrix of          ;

A matrix can be factored, that is, it can be expressed as the product of two matrices:
[A] = [B][C]. There are numerous ways to obtain factor matrices. However, if we
specify either the diagonal elements of [L] or [U], we will obtain a unique
factorization for [A]. Doolittle and Crout's LU decomposition methods are based on
these ideas. Similarly, [A] can be factored as the product of [L] and [U]; [A] = [L][U],
where [L] is a lower triangular matrix and [U] is an upper triangular matrix.

Doolittle's method yields a lower triangular matrix and a unit upper triangular
matrix,

in contrast to Crout's method, which yields a unit lower triangular matrix and an
upper triangular matrix,

 LU DECOMPOSITION METHOD

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Consider the system of linear equations, 

Then, by using LU Decomposition Doolittle’s method, the system of linear equations
can be solved in four steps:

STEP 1: Rewrite the linear equation into a matrix equation, AX = b

STEP 2: Construct the lower triangular matrix and upper triangular matrix, A = LU

STEP 3: Solve Ly = b by using forward substitution

STEP 4: Solve UX = y by using backward substitution

 DOOLITTLE'S METHOD

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S

19



STEP 2 | A=LU
Construct the lower triangular matrix and upper triangular matrix

STEP 1 | AX=b
Rewrite the linear

equation into matrix
equation 

DOOLITTLE'S METHOD -  STEP BY STEP

EXAMPLE 1 :  Solve the given system of  the l inear equation below using
Doolitt le 's  method.

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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STEP 3 | Ly=B
In this step, we use forward substitution method to determine the values of y

STEP 4 | UX=y
In this step, we use backward substitution method to solve the problem

Therefore,

DOOLITTLE'S METHOD -  STEP BY STEP

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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STEP 2 | A=LU
Construct the lower triangular matrix and upper triangular matrix

STEP 1 | AX=b
Rewrite the linear

equation into matrix
equation 

EXAMPLE 2:  Solve the given system of  the l inear equation below using
Doolitt le 's  method.

DOOLITTLE'S METHOD -  GUIDED EXERCISE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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STEP 3 | Ly=B
In this step, we use forward substitution method to determine the values of y

STEP 4 | UX=y
In this step, we use backward substitution method to solve the problem

Therefore,

DOOLITTLE'S METHOD -  GUIDED EXERCISE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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DOOLITTLE'S METHOD -  INDEPENDENT PRACTICE

Generate the matrix A=LU such that L is the lower triangular matrix with principal
diagonal elements being equal to 1 and U is the upper triangular matrix.

1)

2)

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Generate the matrix A=LU such that L is the lower triangular matrix with principal
diagonal elements being equal to 1 and U is the upper triangular matrix.

3)

4)

DOOLITTLE'S METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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DOOLITTLE'S METHOD -  INDEPENDENT PRACTICE

Generate the matrix A=LU such that L is the lower triangular matrix with principal
diagonal elements being equal to 1 and U is the upper triangular matrix.

5)

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

6)






Answer: x = -1.85, y = -0.43, z = 0.94 



DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

7)






Answer: x = 0.44, y = -0.33, z = 0.11  



DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

8)






Answer: x = -0.62, y = -1.75, z = 3.21  



DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

9)






Answer: x = 2.5, y = 6, z = -3.5  



DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

10)






Answer: x = -3.42, y = -0.37, z = 8.73  



DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

11)








DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

12)








DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Doolittle’s method.

13)








DOOLITTLE'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Consider the system of linear equations, 

Then, by using LU Decomposition Crout’s method, the system of linear equations
can be solved in four steps:

STEP 1: Rewrite the linear equation into a matrix equation, AX = b

STEP 2: Construct the lower triangular matrix and upper triangular matrix, A = LU

STEP 3: Solve Ly = b by using forward substitution

STEP 4: Solve UX = y by using backward substitution

CROUT'S METHOD

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S

35



STEP 2 | A=LU
Construct the lower triangular matrix and upper triangular matrix

STEP 1 | AX=b
Rewrite the linear

equation into matrix
equation 

CROUT'S METHOD -  STEP BY STEP

EXAMPLE 1 :  Solve the given system of  the l inear equation below using
Crout 's  method.

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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STEP 3 | Ly=B
In this step, we use forward substitution method to determine the values of y

STEP 4 | UX=y
In this step, we use backward substitution method to solve the problem

Therefore,

CROUT'S METHOD -  STEP BY STEP

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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STEP 2 | A=LU
Construct the lower triangular matrix and upper triangular matrix

STEP 1 | AX=b
Rewrite the linear

equation into matrix
equation 

EXAMPLE 2:  Solve the given system of  the l inear equation below using
Doolitt le 's  method.

CROUT'S METHOD -  GUIDED EXERCISE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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STEP 3 | Ly=B
In this step, we use forward substitution method to determine the values of y

STEP 4 | UX=y
In this step, we use backward substitution method to solve the problem

Therefore,

CROUT'S METHOD -  GUIDED EXERCISE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Generate the matrix A=LU such that L is the lower triangular matrix and U is the
upper triangular matrix with principal diagonal elements being equal to 1.

1)

2)

CROUT'S METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Generate the matrix A=LU such that L is the lower triangular matrix and U is the
upper triangular matrix with principal diagonal elements being equal to 1.

3)

4)

CROUT'S METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Generate the matrix A=LU such that L is the lower triangular matrix and U is the
upper triangular matrix with principal diagonal elements being equal to 1.

5)

CROUT'S METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Crout’s method.

6)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Crout’s method.

7)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Crout’s method.

8)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Crout’s method.

9)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Crout’s method.

10)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Crout’s method.

11)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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Solve the following system of linear equations using Crout’s method.

12)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S

49



Solve the following system of linear equations using Crout’s method.

13)

CROUT'S METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      L I N E A R  E Q U A T I O N S
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The Fixed-Point Iteration approach turns algebraic and transcendental equations

into fixed-point functions to iteratively identify the roots of those equations. A

fixed point is one whose value remains constant after a specific transformation. A

fixed point of a function in mathematics is a specific element that the function maps

to itself. The Fixed-Point Iteration method computes the answer to the given

problem by repeatedly applying the idea of a fixed point.

FIXED POINT ITERATION METHOD

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

Find points a and
b such that

a   b

 STEP 1

Take the interval
[a,b] and find the
average of a and
b as the value of




 STEP 2

Formulate f(x)=0
in the form of

x=g(x). List out
all possible g(x).

 STEP 3

Choose g(x) with
minimum value of

g'(x). 
1-Differentiate
all g(x) obtained

with respect to x.
2-Substitute the
value of x with
value in STEP 2

 STEP 4

Find the
approximate root
of f(x) by using
g(x) that satisfy

 

 STEP 5

The ALGORITHM;

51



Let f(x)=0 

STEP 3 | Formulate
f(x)=0 in the form of

x=g(x). List all possible
g(x).

STEP 4 | Choose g(x) which has the minimum value of g'(x).



1- Differentiate all g(x) with respect to x
2- Substitute the value of x with the initial value from STEP 2

STEP 1 | Find point a
and b such that a    b 

FIXED POINT ITERATION METHOD -  STEP BY STEP

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

EXAMPLE 1: Find the root of the function below by using the Fixed-Point Iteration

method.

STEP 2 | Find the
average of a and b 
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== ==

ALPHA )

ALPHA CALC

SHIFT

( 3 ALPHA

) + 5 )

CALC

=5.2

Calculation techniques using a scientific calculator

   STEP 5 | Find the
approximate root of

f(x) by using g(x)
that satisfy 




Therefore, the
approximate root of 

is at 

Use the CALC command on a scientific calculator, to calculate the
value of g(x) by substituting the value of xo as the first iteration;

FIXED POINT ITERATION METHOD -  STEP BY STEP

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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STEP 1 | Let f(x)=0 

STEP 2 | Find the
initial value of x 

STEP 3 | Formulate
f(x)=0 in the form of

x=g(x). List all possible
g(x).

STEP 4 | Choose g(x) which has the minimum value of g'(x).



1- Differentiate all g(x) with respect to x
2- Substitute the value of x with the initial value from STEP 2

FIXED POINT ITERATION METHOD -  GUIDED EXERCISE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

EXAMPLE 2: Find the root of the function below using the Fixed-Point Iteration

method.
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   STEP 5 | Find the
approximate root of

f(x) by using g(x)
that satisfy 




FIXED POINT ITERATION METHOD -  GUIDED EXERCISE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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List all possible g(x) for each of the non-linear equations below:

 1)

 2)

FIXED POINT ITERATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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List all possible g(x) for each of the non-linear equations below:

 3)

 4)

FIXED POINT ITERATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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FIXED POINT ITERATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

 5)

Formulate all possible functions of g(x). Then, determine the suitable function to

iterate.

 6)
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Formulate all possible functions of g(x). Then, determine the suitable function to

iterate.

 7)

 8)

FIXED POINT ITERATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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Formulate all possible functions of g(x). Then, determine the suitable function to

iterate.

 9)

 10)

FIXED POINT ITERATION METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

1)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

2)

62



FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

3)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

5)

65



FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

6)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

7)

67



FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

8)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

9)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

10)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

11)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

12)
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0.173)

FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

13)

73



FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

14)

0.468)
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FIXED POINT ITERATION METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

15)
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The Newton-Raphson approach is a root-finding procedure used in numerical

analysis that generates progressively improved approximations to a real-valued

function's roots (or zeroes). The simplest form begins with a single-variable function      

  that is specified for a real variable   , the function's derivative  ′, and a first-guess

value for the root of  ,   . If the function is consistent enough and the initial

estimation is accurate,  

is a more accurate approximation of the root than     . Until a result is obtained that

is sufficiently accurate, the operation is repeated as,

Find points a and
b such that

a   b

 STEP 1

Take the interval
[a,b] and find the
value of    using
False Position

Method

 STEP 2

Evaluate the
differential of 

 STEP 3

Draw an iterative
table with 4

column:
   ,    ,       and

 STEP 4

Iterates the value
of   starting with  

  obtained in
STEP 2

 STEP 5

Iteration stops
when 

                0.01
or less (depends

on number of
decimal places

required by the
question.

 STEP 6

NEWTON RAPHSON METHOD

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

The ALGORITHM;
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STEP 6 | Iteration
stops when

                    0.001

STEP 1 | Find point a
and b such that a    b 

EXAMPLE 1: Find the real root of the function below using the Newton-Raphson

method.

STEP 2 | Find the
initial value of x using
False Position method

STEP 3 | Find
derivatives of f(x)

STEP 4 | Draw an
iterative table with 4

column

STEP 5 | Iterates the
value of x by using

formula





Therefore, the real root of the function 

is at

NEWTON RAPHSON METHOD -  STEP BY STEP

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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STEP 6 | Iteration
stops when

                    0.001

STEP 1 | Find point a
and b such that a    b 

STEP 2 | Find the
initial value of x using
False Position method

STEP 3 | Find
derivatives of f(x)

STEP 4 | Draw an
iterative table with 4

column

STEP 5 | Iterates the
value of x by using

formula





Therefore, 

EXAMPLE 2: Find the real root of the function below using the Newton-Raphson

method.

NEWTON RAPHSON METHOD -  GUIDED EXERCISE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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Determine the initial root,      for each of the following equations.

1)

2)

NEWTON RAPHSON METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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Determine the initial root,      for each of the following equations.

3)

4)

NEWTON RAPHSON METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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Determine the initial root,      for each of the following equations.

5)

NEWTON RAPHSON METHOD -  INDEPENDENT PRACTICE

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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1)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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2)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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3)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

(Answer: x2=-3.0000)
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4)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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5)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

-2.0000)
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6)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

87



7)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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8)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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9)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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10)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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11)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

1.607)
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12)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

3.457)
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13)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4
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14)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4
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15)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4
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16)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4
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17)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4
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18)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S
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19)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4
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20)

NEWTON RAPHSON METHOD -  EXIT ACTIVITY

N U M E R I C A L  M E T H O D      |      N O N  L I N E A R  E Q U A T I O N S

4
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D B M 3 0 0 3 3      |      N U M E R I C A L  M E T H O D

CHAPTER TEST

COMPILATION OF
PAST FINAL
EXAMINATION
QUESTIONS
NUMERICAL METHOD
[QUESTION 2]
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A)   i-   Convert the following system of linear equations into 𝐴𝑋 = 𝐵
form:

            (a)   9𝑦 − 6𝑧 = 5
                   7𝑥 + 9𝑦 − 2𝑧 = 6 
                   𝑧 + 8𝑦 = −3

            (b)   3𝑝 + 6𝑞 − 2𝑟 = 0
                   8𝑝 + 9𝑞 + 4 = 5𝑟
                   𝑞 + 3𝑟 = 3

     ii-   Solve the following system of linear equations by using Gaussian 
            Elimination Method.
                                                2𝑥 + 𝑦 − 2𝑧 = 2 
                                                𝑥 + 2𝑦 = 3 − 2𝑧
                                                3𝑦 + 𝑧 = −1 

B)   Given the equation;                                . Find the root of the equation 
      by using Newton Raphson Method where the root is between 𝑥 = 0  
      and 𝑥 = 1. Give the answer correct to three decimal places.

SET 1  -  SESSION II :  2021/2022

N U M E R I C A L  M E T H O D      |      C H A P T E R  T E S T

QUESTION 2










[2 marks]







[2 marks]















[11 marks]











[10 marks]
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A)   Given a linear equation:

               5r - 2s - 3t = -3
               4s + 3t = -2 
               -s + 9t = 60

       i- Rewrite the equation into the matrix form of Ax = B

      ii- Solve r, s and t by using Crout's Method if given A = LU

B)   Given the non-linear equation is 

      i- Calculate the first approximate for 

     ii- Calculate the root correct to 4 decimal places by using Newton 
          Raphson's Method.

SET 2 -  SESSION I :  2021/2022

N U M E R I C A L  M E T H O D      |      C H A P T E R  T E S T

QUESTION 2














[1 mark]



[9 marks]





















[4 marks





[11 marks]
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A)   Solve the linear equations by using Gauss Elimination Method.

               x + 2y - z = 2
               3y + z + 4x = 3 
               2x + 2y + 3z = 5
  

     
B)   Based on the following equations: 

               a + 2b - 2c = 1
               2a + 5b - 5c= - 2 
               - a + IOb - 5c = - 3
 
      Calculate matrix L and U by using Doolittle Method. 

C)   By using Newton-Raphson Method, determine the root for the 
      given function below. Give the answer correct to three decimal 
      places. Assume the first approximation as 1. 
                

SET 3 -  SESSION JUNE 2019

N U M E R I C A L  M E T H O D      |      C H A P T E R  T E S T

QUESTION 2










[9 marks]



















[10 marks











[6 marks]
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A)   Determine the roots for the function below, correct to 3 decimal 
      places by using Fixed Point Iteration method. Given that

                

     
B)   Solve the following equations by using the Gaussian 
      Elimination Method. 

               3x - 6y + 5z = 6
               - 4y + 3z = 4 
               4x + 8y - 8z = 10
 
      

SET 4 -  SESSION JUNE 2019 (DBM3013)

N U M E R I C A L  M E T H O D      |      C H A P T E R  T E S T

QUESTION 2






[10 marks]

















[15 marks
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A)   By using Newton-Raphson method, determine the root for

      Given                 . Give the answer correct to four decimal places.

                

     
B)   Find the matrix L and U for the equation below using Doolittle 
      Method.

               s + 4t - 2u = 3
               3s - 2t + 5u = 14 
               2s + 3t + u = 11
 
      

SET 5 -  SESSION DISEMBER 2018

N U M E R I C A L  M E T H O D      |      C H A P T E R  T E S T

QUESTION 2








[10 marks]



















[15 marks]
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A)   i-   Convert the following system of linear equations into 𝐴𝑋 = 𝐵
form:

            (a)   4𝑦 − 6𝑧 = 5
                   3𝑥 + 6𝑦 − 9𝑧 = - 5 
                   - 4x = 4

            (b)   2x + 6z + 2 = 0
                   x + 2y + 9z + 5 = 0
                   6y - 6z = 5

     ii-   Identify the real root by using the Newton-Raphson method 
            correct to 3 decimal places for                                     where

B) Find the value                       by using the Crout Method

 

SET 6 -  SESSION JUNE 2017

N U M E R I C A L  M E T H O D      |      C H A P T E R  T E S T

QUESTION 2










[2 marks]







[2 marks]











[6 marks]













[15 marks]
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REFERENCE

Numerical  Methods Calculators  –  AtoZmath.com

https ://atozmath.com

Online Calculator :  Numerical  Methods

https ://www.codesansar .com/online-calculator

https ://byjus .com/maths/newton-raphson-method
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